Additive Manufacturing
[1]. Jinquan Cheng, Geometry and Size Effect in Metal Additive Manufacturing and Relevant Processing Parameters Optimization, TMS2019, March 10-14, 2019, San Antonio, Texas, USA
[2]. Jinquan Cheng, Overcoming Edge and Over-hang Effect In Metal Additive Manufacturing by Process Parameters and Deposition Strategy Design, TMS2019, March 10-14, 2019, San Antonio, Texas, USA
[3].Bandar AlMangour , Dariusz Grzesiak, Jinquan Cheng, Yavuz Ertas, Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods, Journal of Material Processing Technology, 2018, in press, https://doi.org/10.1016/j.jmatprotec.2018.01.028
[4]. Christopher Rouleau; Zachary Gosser; Cary Smith; Zhili Zhang; Kunlun Hong; Jinquan Cheng; Yoseph Bar-Cohen; Anming Hu, Self-powered fast brazing of Ti-6Al-4V using Ni/Al Reactive Multilayer Films, Applied Science, in press , 2018.
[5]. Jinquan Cheng, Distortion Analysis And Reduction For Layerwise Additive Manufacturing Processing By A Laminated Layerwise Analytical Model And Tool, Materials Science and Technology 2017, Oct 8-12, 2017, Pittsburgher, PA.
[6]. Jinquan Cheng, Interfacial Bonding Quality Prediction and Improvement for Fusion Deposition Modeling by Layerwise Additive Manufacturing Analytical Block Technique, Materials Science and Technology 2017, Oct 8-12, 2017, Pittsburgher, PA.
[7]. Jinquan Cheng , Optimization of processing parameters for additive manufacturing by analytical layerwise model. Materials Science and Technology 2015, Oct.4-8 2015, Columbus, Ohio, USA.
[8]. Jinquan Cheng , Anil Chaudhary, Sudarsanam Babu, Mark Norfolk, Daniel Foster and Derek Boone, Process simulation of ultrasonic additive manufacturing and the prediction of interface bonding, Materials Science and Technology 2013, Oct.27-31, 2013, Montreal, Canada.
Plate and Shell Structures’ Designs and Analyses
[1]. Cheng J.Q., Li G.Q., Pang S.S., Zhou ZG, Optimization of smart adhesively bonded single-strap composite joint, Journal of Adhesion Science and Technology, 27 (8), 879-895 (2013)
[2]. Cheng J.Q., Han H.P., Taheri F., (2008). An adaptive enhancement of dynamic buckling of a laminated composite beam under axial impact by surface bonded piezoelectric patches. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33-40): 2680-2691. https://www.sciencedirect.com/science/article/pii/S0045782508000261
[3]. Cheng J. Q., Li G. Q. (2008). Stress analyses of a smart composite pipe joint integrated with piezoelectric layers under torsion loading, International Journal of Solids and Structures, 45(5):1153-1178, 2008. (Top 25 Hottest Articles in International Journal of Solids and Structures at January-March 2008)
https://www.sciencedirect.com/science/article/pii/S0020768307004386/pdfft?md5=3d41a048887bb50d920e04ad027f46af&pid=1-s2.0-S0020768307004386-main.pdf
[4]. Li G.Q., Cheng J.Q. (2007). A generalized analytical modeling of grid stiffened composite structures, Journal of Composite Materials, 41(24): 2939-2969, 2007. https://www.sciencedirect.com/science/article/pii/S0020768307004386/pdfft?md5=3d41a048887bb50d920e04ad027f46af&pid=1-s2.0-S0020768307004386-main.pdf
[5]. Cheng J.Q., Wu X.X., Li G.Q., Pang S.S., Taheri F. (2007) A novel smart adhesive single-strap joint integrated with shape memory alloy (SMA) reinforced layers. International Journal of Solids and Structures, 44(10): 3557-3574.
https://www.sciencedirect.com/science/article/pii/S0020768306004136/pdfft?md5=bbe6cb233d6d2cb6ac2e3821a0340e38&pid=1-s2.0-S0020768306004136-main.pdf
[6]. Cheng J.Q., Wu X.X., Li G.Q., Taheri F. and Pang S.S., (2007). Design and analysis of a smart adhesive single-strap joint system integrated with the piezoelectric reinforced composite layers. Composite Science and Technology, 67(6): 1264-1274.
https://doi.org/10.1016/j.compscitech.2005.11.032
[7]. Cheng J.Q., Wu X.X., Li G.Q., Pang S.S., Taheri F. (2007). Design and analysis of a smart composite pipe joint integrated with piezoelectric layers under bending. International Journal of Solids and Structures, 44(1): 298-319.
https://www.sciencedirect.com/science/article/pii/S0020768306001314/pdfft?md5=15a413613ded1d3d318e7bcb12717ec3&pid=1-s2.0-S0020768306001314-main.pdf
[8]. J.W.Pan, J.Q.Cheng, T.Furukawa, J.G.Michopoulos, (2010). Stochastic Characterization of Anisotropic Materials based on Multi-sensor Data Fusion. Key Engineering Materials, 2010.
[9]. Cheng J.Q., Wu X.X., Li G.Q., Taheri F., Pang S.S., (2006). Development of a smart composite pipe joint integrated with piezoelectric layers under tensile loading. International Journal of Solids and Structures, 2006, 43: 5370-5385.
https://www.sciencedirect.com/science/article/pii/S0020768306000023/pdfft?md5=a771fd3c682bac294ca3e7f79be75f07&pid=1-s2.0-S0020768306000023-main.pdf
[10]. Cheng J.Q., F. Taheri, H.P. Han , An adaptive enhancement of dynamic buckling of a laminated composite beam under axial impact by surface bonded piezoelectric patches, Computer Methods in Applied Mechanics and Engineering, Volume 197, Issues 33–40, 1 June 2008, Pages 2680-2691.
https://www.sciencedirect.com/science/article/pii/S0045782508000261
[11]. Cheng J.Q., F. Taheri, H.P. Han (2006). Strength improvement of a smart adhesive bonded joint system by partially integrated piezoelectric patches. Journal of Adhesion Science and Technology, 2006, 20(6): 503-518.
[12]. Han H.P., Cheng J.Q., Taheri F., Neil Pegg, (2006). The nonlinear response of aluminum cylindrical shells with cutout subjected to axial compression. Thin-walled Structures, 2006, 44(2): 254-270. https://doi.org/10.1016/j.tws.2005.11.003
[13]. Cheng J.Q. and Taheri F., (2006). A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. International Journal of Solids and Structures, 2006, 43(5): 1079-1092.
https://www.sciencedirect.com/science/article/pii/S002076830500209X/pdfft?md5=12c34fd86d44913ddd03cacbcefe5475&pid=1-s2.0-S002076830500209X-main.pdf
[14]. Cheng J.Q., Wang B. and Du S.Y. (2005). A theoretical analysis of piezoelectric/ composite laminate with larger-amplitude deflection effect, Part II: Hermite Differential Quadrature method and application. International Journal of Solids and Structures, 2005, 42(24-25): 6181-6201.
https://www.sciencedirect.com/science/article/pii/S0020768305002258/pdfft?md5=139e22df5fd74a8859a78ccf58156ce5&pid=1-s2.0-S0020768305002258-main.pdf
[15]. Cheng J.Q., Wang B. and Du S.Y. (2005). A theoretical analysis of piezoelectric/ composite laminate with larger-amplitude deflection effect, Part I: Fundamental Equations. International Journal of Solids and Structures, 2005, 42(24-25): 6166-6180.
https://www.sciencedirect.com/science/article/pii/S0020768305002246/pdfft?md5=a0f77f9a51b562fea4108f48c44d85db&pid=1-s2.0-S0020768305002246-main.pdf
[16]. Cheng J.Q. and F. Taheri, (2005). A novel smart adhesive joint system. Smart Materials and Structures, 2005, 14(5): 971-981.
[17]. Wu X.X., Cheng J.Q. and Wang B., (2001). Influence of applied electric field on the energy release rate of cracked PZT/elastic laminates. Smart Materials and Structures, 10(6): 970-978.
[18]. Cheng J.Q., Qian, C. F., Zhao, M.H., Lee, S.W.R., Tong, P. and Zhang, T.Y. (2000). Effects of electric fields on the bending behavior of PZT-5H piezoelectric laminates. Smart Materials and Structures, 9: 824-831.
Advanced Analytical and Numerical Methods
[1]. Cheng, J.Q., Wang, B. and Du, S.Y., (2002). Effect of domain switching on fracture behavior of polycrystalline ferroelectric ceramics. Applied Mathematics and Mechanics, 23(11): 1250-1262.
[2]. Cheng, J.Q., Wang, B. and Du, S.Y., (2002). A statistical model prediction of effective electroelastic properties of polycrystalline ferroelectric ceramics with randomly oriented defects. Mechanics of Materials, 34(10): 643-655. https://doi.org/10.1016/S0167-6636(02)00162-X
[3]. Cheng, J.Q., Wang, B. and Du, S.Y., (2000). A statistical model for predicting effective electroelastic properties of polycrystalline ferroelectric ceramics with aligned defects. International Journal of Solids and Structures, 37(35): 4763-4781.
https://doi.org/10.1016/S0020-7683(99)00179-1
[4]. Cheng, J.Q., Wang, B. and Du, S.Y., (1999). Effective electroelastic properties of polycrystalline ferroelectric ceramics predicted by a statistical model. Acta Mechanica, 138 (3-4): 163-175.
[5]. Cheng, J.Q., Wang, B. and Du, S.Y., (1999). Time dependence of effective properties of polycrystalline ferroelectric ceramics. Mechanics Research Communications, 26(4): 407-414.
https://doi.org/10.1016/S0093-6413(99)00041-5
[6]. Cheng J.Q., Wang B. and Du S.Y. (2005). A theoretical analysis of piezoelectric/ composite laminate with larger-amplitude deflection effect, Part II: Hermite Differential Quadrature method and application. International Journal of Solids and Structures, 2005, 42(24-25): 6181-6201.
[7]. Li H., Cheng J.Q. and T.Y. Ng, (2005). A new variation of point collocation: the meshless finite mixture (MFM) method. International Journal for Computational Methods in Engineering Science and Mechanics, 6(1): 63-75.
[8]. Cheng J.Q., Lee H.P. and H. Li, (2004). Development of a meshless finite mixture (MFM) method. Structural Engineering & Mechanics, 17(5): 671-690.
[9]. Li H., Cheng J.Q., Ng T.Y., Chen J., Lam K.Y., (2004). A meshless Hermite-Cloud method for nonlinear fluid-structure analysis of near-bed submarine pipelines under current. Engineering Structures, 26(4): 531-542.
[10]. Li H., Ng T.Y., Cheng JQ, Lam K.Y., (2003). Hermite-Cloud method: a novel true meshless method. Computational Mechanics, 33(1): 30-41.
[11]. Ng T.Y., Li H., Cheng J.Q., Lam K. Y. and Yew Y. K., (2003). A novel true meshless numerical technique (hM-DOR Method) for the deformation control of circular plates integrated with piezoelectric sensors/actuators. Smart Materials and Structures, 12(6): 955-961.
[12]. Ng T.Y., Li H., Cheng J.Q., Lam K.Y., (2003). A new hybrid meshless-differential order reduction (hM-DOR) method with applications to shape control of smart structures via distributed sensors/actuators. Engineering Structures, 25(2): 141-154.